99久久精品毛片免费播放_亚洲av片不卡无码久久_久久精品国产亚洲AV蜜臀色欲_精品久久久久久成人AV

加載中...

點(diǎn)擊這里給我發(fā)消息

QQ群:417857029

新產(chǎn)品·新技術(shù)信息

麻省理工學(xué)院利用碳納米管制造質(zhì)輕高性能航天復(fù)合材料獲得新進(jìn)展

來源:林中祥膠粘劑技術(shù)信息網(wǎng)2016年08月19日

閱讀次數(shù):

  據(jù)報道,麻省理工學(xué)院航天工程師于近日設(shè)計了碳納米管“針”,它可以“穿針引線”使復(fù)合材料層間實(shí)現(xiàn)良好粘合,從而有助于制造出質(zhì)量更輕、抗損傷性能更強(qiáng)的航天飛機(jī)。

  此前,空客和波音公司最新的載人航天飛機(jī)機(jī)身主要是由先進(jìn)的復(fù)合材料構(gòu)成的,譬如用質(zhì)量極輕且使用性能優(yōu)異的碳纖維增強(qiáng)塑料代替飛機(jī)的鋁基材料,可以使其重量減輕約20%。復(fù)合材料在飛機(jī)上的主要應(yīng)用優(yōu)勢就在于通過減輕重量以節(jié)省燃油消耗。但是復(fù)合材料抗損傷性能較差:與鋁基材料在斷裂前可以承受較大的沖擊相比,復(fù)合材料的多層結(jié)構(gòu)在較小沖擊下就很容易發(fā)生斷裂。

  研究人員使用碳納米管將每一層復(fù)合材料“栓”在一起。碳納米管中的薄卷狀碳原子雖然“身形”微小,但是強(qiáng)度極高。他們在類膠狀聚合物基體中嵌入碳納米管 “森林”,然后“壓緊”碳纖維復(fù)合材料層間的聚合物基體。納米管就像是細(xì)小的豎直排列的“針”,充當(dāng)多層結(jié)構(gòu)的支架,在層間部位進(jìn)行“縫合”。

  測試結(jié)果表明,與現(xiàn)有復(fù)合材料相比,經(jīng)碳納米管“縫合”的復(fù)合材料強(qiáng)度可提升30%,在斷裂前能承受更大的作用力。

  此項(xiàng)研究的首席研究員,MIT航空航天系博士后Roberto Guzman認(rèn)為,性能提升的復(fù)合材料可以用于制造強(qiáng)度更高、質(zhì)量更輕的飛機(jī)零部件,尤其是那些使用傳統(tǒng)復(fù)合材料制造的因包含螺釘或螺栓而容易斷裂的零部件。

  “尺寸是關(guān)鍵”

  當(dāng)前,復(fù)合材料由層狀的橫向碳纖維組成,通過膠粘劑粘接。此項(xiàng)研究參與者,MIT航空航天系教授Wardle指出,“層間粘合處是非常薄弱、存在問題的區(qū)域”。許多學(xué)者嘗試采用“Z釘扎”方法固定或通過“三維編制”復(fù)合材料層的碳纖維束以增強(qiáng)結(jié)合性能,類似于釘子和針線所起的作用。

  Wardle 表示,“釘子或針的尺寸是碳纖維的幾千倍,所以如果在碳纖維中加入這些物質(zhì),將會破壞成千上萬的碳纖維,對復(fù)合材料本身的損傷不言而喻。”而碳納米管直徑約10納米,只有碳纖維尺寸的百萬分之一。

  “尺寸的問題很重要,正因?yàn)榧{米管進(jìn)入復(fù)合材料內(nèi)部而不會影響大尺寸的碳纖維,才使復(fù)合材料的性能得以保持,” Wardle解釋說,“碳納米管擁有的表面積達(dá)到碳纖維的1000倍,這使它們與聚合物基體結(jié)合良好。”

  Guzman和Wardle采用的新技術(shù)即可使碳納米管嵌入聚合物膠內(nèi)部。首先,他們獲得豎直排列的碳納米管森林,然后將納米森林置于粘稠的、未固化的復(fù)合層之間,重復(fù)此過程一直到16層(典型的復(fù)合材料疊層結(jié)構(gòu)),實(shí)現(xiàn)碳納米管在層與層之間粘結(jié)。

  Wardle認(rèn)為,“隨著大多數(shù)新型飛機(jī)的重量超過一半來自于復(fù)合材料,提升當(dāng)前復(fù)合材料的綜合性能對拓寬其在航空結(jié)構(gòu)中的應(yīng)用將起到很大的推動作用。”

原文入下:

  The newest Airbus and Boeing passenger jets flying today are made primarily from advanced composite materials such as carbon fiber reinforced plastic — extremely light, durable materials that reduce the overall weight of the plane by as much as 20 percent compared to aluminum-bodied planes. Such lightweight airframes translate directly to fuel savings, which is a major point in advanced composites’ favor.

  Method could help make airplane frames lighter, more damage-resistant

 
 

  But composite materials are also surprisingly vulnerable: While aluminum can withstand relatively large impacts before cracking, the many layers in composites can break apart due to relatively small impacts — a drawback that is considered the material’s Achilles’ heel.

 

 

  Now MIT aerospace engineers have found a way to bond composite layers in such a way that the resulting material is substantially stronger and more resistant to damage than other advanced composites. Their results are published in the journal Composites Science and Technology.

  The researchers fastened the layers of composite materials together using carbon nanotubes — atom-thin rolls of carbon that, despite their microscopic stature, are incredibly strong. They embedded tiny “forests” of carbon nanotubes within a glue-like polymer matrix, then pressed the matrix between layers of carbon fiber composites. The nanotubes, resembling tiny, vertically-aligned stitches, worked themselves within the crevices of each composite layer, serving as a scaffold to hold the layers together.

  In experiments to test the material’s strength, the team found that, compared with existing composite materials, the stitched composites were 30 percent stronger, withstanding greater forces before breaking apart.

  Roberto Guzman, who led the work as an MIT postdoc in the Department of Aeronautics and Astronautics (AeroAstro), says the improvement may lead to stronger, lighter airplane parts — particularly those that require nails or bolts, which can crack conventional composites.

  “More work needs to be done, but we are really positive that this will lead to stronger, lighter planes,” says Guzman, who is now a researcher at the IMDEA Materials Institute, in Spain. “That means a lot of fuel saved, which is great for the environment and for our pockets.”

  The study’s co-authors include AeroAstro professor Brian Wardle and researchers from the Swedish aerospace and defense company Saab AB.

  “Size matters”

  Today’s composite materials are composed of layers, or plies, of horizontal carbon fibers, held together by a polymer glue, which Wardle describes as “a very, very weak, problematic area.” Attempts to strengthen this glue region include Z-pinning and 3-D weaving — methods that involve pinning or weaving bundles of carbon fibers through composite layers, similar to pushing nails through plywood, or thread through fabric.

  “A stitch or nail is thousands of times bigger than carbon fibers,” Wardle says. “So when you drive them through the composite, you break thousands of carbon fibers and damage the composite.”

  Carbon nanotubes, by contrast, are about 10 nanometers in diameter — nearly a million times smaller than the carbon fibers.

  “Size matters, because we’re able to put these nanotubes in without disturbing the larger carbon fibers, and that’s what maintains the composite’s strength,” Wardle says. “What helps us enhance strength is that carbon nanotubes have 1,000 times more surface area than carbon fibers, which lets them bond better with the polymer matrix.”

  Stacking up the competition

  Guzman and Wardle came up with a technique to integrate a scaffold of carbon nanotubes within the polymer glue. They first grew a forest of vertically-aligned carbon nanotubes, following a procedure that Wardle’s group previously developed. They then transferred the forest onto a sticky, uncured composite layer and repeated the process to generate a stack of 16 composite plies — a typical composite laminate makeup — with carbon nanotubes glued between each layer.

  To test the material’s strength, the team performed a tension-bearing test — a standard test used to size aerospace parts — where the researchers put a bolt through a hole in the composite, then ripped it out. While existing composites typically break under such tension, the team found the stitched composites were stronger, able to withstand 30 percent more force before cracking.

  The researchers also performed an open-hole compression test, applying force to squeeze the bolt hole shut. In that case, the stitched composite withstood 14 percent more force before breaking, compared to existing composites.

  “The strength enhancements suggest this material will be more resistant to any type of damaging events or features,” Wardle says. “And since the majority of the newest planes are more than 50 percent composite by weight, improving these state-of-the art composites has very positive implications for aircraft structural performance.”

  Stephen Tsai, emeritus professor of aeronautics and astronautics at Stanford University, says advanced composites are unmatched in their ability to reduce fuel costs, and therefore, airplane emissions.

  “With their intrinsically light weight, there is nothing on the horizon that can compete with composite materials to reduce pollution for commercial and military aircraft,” says Tsai, who did not contribute to the study. But he says the aerospace industry has refrained from wider use of these materials, primarily because of a “lack of confidence in [the materials’] damage tolerance. The work by Professor Wardle addresses directly how damage tolerance can be improved, and thus how higher utilization of the intrinsically unmatched performance of composite materials can be realized.”

  This work was supported by Airbus Group, Boeing, Embraer, Lockheed Martin, Saab AB, Spirit AeroSystems Inc., Textron Systems, ANSYS, Hexcel, and TohoTenax through MIT's Nano-Engineered Composite aerospace STructures (NECST) Consortium and, in part, by the U.S. Army.

  About Massachusetts Institute of Technology (MIT)

  The mission of the Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century. MIT is also driven to bring knowledge to bear on the world’s great challenges.

  • 標(biāo)簽:
相關(guān)閱讀

本站所有信息與內(nèi)容,版權(quán)歸原作者所有。網(wǎng)站中部分新聞、文章來源于網(wǎng)絡(luò)或會員供稿,如讀者對作品版權(quán)有疑議,請及時與我們聯(lián)系,電話:025-85303363 QQ:2402955403。文章僅代表作者本人的觀點(diǎn),與本網(wǎng)站立場無關(guān)。轉(zhuǎn)載本站的內(nèi)容,請務(wù)必注明"來源:林中祥膠粘劑技術(shù)信息網(wǎng)(www.m.cnmindian.com)".

網(wǎng)友評論

©2015 南京愛德福信息科技有限公司   蘇ICP備10201337 | 技術(shù)支持:南京聯(lián)眾網(wǎng)絡(luò)科技有限公司

客服

客服
電話

1

電話:025-85303363

手機(jī):13675143372

客服
郵箱

2402955403@qq.com

若您需要幫助,您也可以留下聯(lián)系方式

發(fā)送郵箱

掃二
維碼

微信二維碼
99久久精品毛片免费播放_亚洲av片不卡无码久久_久久精品国产亚洲AV蜜臀色欲_精品久久久久久成人AV
  • <rt id="ieuyu"></rt>
  • <rt id="ieuyu"></rt>
  • 91网站最新网址| 91精品黄色片免费大全| 一区二区三区不卡视频在线观看| 色综合久久久久| 午夜在线成人av| 日韩免费一区二区三区在线播放| 国内精品久久久久影院一蜜桃| 日本一区二区三区免费乱视频| 91猫先生在线| 日本视频一区二区三区| 久久久99免费| 一本色道久久综合亚洲aⅴ蜜桃| 亚洲国产aⅴ成人精品无吗| 日韩欧美色电影| 成人午夜激情在线| 亚洲第四色夜色| 久久综合色婷婷| 色综合中文综合网| 欧美一区二区三级| 国产真实乱子伦精品视频| 国产精品伦理一区二区| 欧美日韩在线直播| 国产一区中文字幕| 亚洲卡通欧美制服中文| 日韩一区二区三区在线视频| 懂色中文一区二区在线播放| 亚洲影视在线播放| 精品国产免费久久 | 99精品久久99久久久久| 亚洲成人资源在线| 久久久一区二区| 日本久久电影网| 国内精品久久久久影院薰衣草| 亚洲卡通欧美制服中文| 精品久久一区二区| 色系网站成人免费| 狠狠网亚洲精品| 亚洲综合清纯丝袜自拍| 久久综合狠狠综合| 在线视频观看一区| 国产乱子伦视频一区二区三区| 夜夜嗨av一区二区三区网页| 久久久久免费观看| 欧美久久婷婷综合色| 成人黄色小视频在线观看| 亚洲不卡av一区二区三区| 欧美国产精品久久| 欧美一区二区三区男人的天堂| 91在线丨porny丨国产| 久久99精品国产| 亚洲国产日韩综合久久精品| 欧美国产精品一区二区三区| 欧美一区二区黄色| 91黄色在线观看| 国产乱人伦偷精品视频免下载| 亚洲成在人线免费| ㊣最新国产の精品bt伙计久久| 日韩精品一区二区三区视频| 欧美少妇bbb| 99久久精品99国产精品| 国产乱淫av一区二区三区 | 国产精品亚洲专一区二区三区| 亚洲一区二区不卡免费| 国产精品入口麻豆原神| 精品久久久久一区| 欧美日本视频在线| 色网综合在线观看| 成人国产精品免费观看动漫| 激情综合色综合久久| 性做久久久久久久久| 亚洲另类中文字| 日本一区二区三区dvd视频在线| 欧美成人r级一区二区三区| 欧美日韩免费视频| 91行情网站电视在线观看高清版| 成人h动漫精品一区二区| 国产一区 二区| 激情综合五月婷婷| 免费观看91视频大全| 午夜私人影院久久久久| 樱桃视频在线观看一区| 亚洲欧洲精品成人久久奇米网| 欧美国产成人精品| 久久综合九色综合欧美98| 欧美va亚洲va| 欧美一区二区三区四区久久| 欧美久久一二三四区| 欧美图区在线视频| 在线亚洲人成电影网站色www| 97se狠狠狠综合亚洲狠狠| 成人短视频下载| 成人av网站在线观看免费| 国产成人aaaa| 国产69精品久久久久777| 国产伦精品一区二区三区视频青涩| 久久丁香综合五月国产三级网站 | 国产综合久久久久久鬼色| 免费在线观看日韩欧美| 热久久一区二区| 麻豆国产欧美一区二区三区| 免费看欧美美女黄的网站| 日本欧美一区二区三区乱码| 日日噜噜夜夜狠狠视频欧美人| 午夜欧美电影在线观看| 日韩在线一区二区| 日本中文字幕一区二区视频 | 亚洲国产成人自拍| 亚洲国产精品v| 中文字幕一区三区| 亚洲乱码国产乱码精品精可以看| 一区二区三区四区激情| 亚洲一线二线三线视频| 亚洲成人先锋电影| 日韩国产欧美在线视频| 日本aⅴ免费视频一区二区三区| 91美女视频网站| 欧美影视一区二区三区| 欧美日本在线播放| 日韩午夜三级在线| 26uuu国产在线精品一区二区| 久久久久久麻豆| 中文字幕av一区 二区| 最新中文字幕一区二区三区| 亚洲精品菠萝久久久久久久| 亚洲午夜精品17c| 日韩国产在线观看| 激情综合色播激情啊| 福利一区在线观看| 色综合久久久久综合| 欧美日韩一区二区三区高清| 日韩欧美色电影| 国产亚洲一区二区三区四区 | 日本不卡123| 国产资源在线一区| 成+人+亚洲+综合天堂| 日本高清不卡视频| 欧美一区二区三区精品| 久久伊人中文字幕| 中文字幕一区av| 亚洲va天堂va国产va久| 久久99热这里只有精品| 丁香婷婷深情五月亚洲| 色偷偷88欧美精品久久久| 91麻豆精品国产综合久久久久久| 精品国产91亚洲一区二区三区婷婷 | 国产精品国产三级国产普通话99 | heyzo一本久久综合| 色婷婷亚洲综合| 日韩视频免费观看高清在线视频| 国产丝袜欧美中文另类| 一区二区三区精品| 久久国产婷婷国产香蕉| 99综合影院在线| 欧美高清激情brazzers| 国产欧美精品一区二区色综合| 樱桃视频在线观看一区| 久久超碰97人人做人人爱| caoporn国产精品| 91精品一区二区三区久久久久久| 亚洲国产精品成人久久综合一区 | 一区二区三区国产精品| 久久69国产一区二区蜜臀| av不卡在线观看| 欧美一区二区三区免费视频| 国产精品高清亚洲| 秋霞影院一区二区| 97国产精品videossex| 日韩欧美在线不卡| 亚洲欧洲韩国日本视频| 蜜臀av一区二区| 91美女在线观看| 久久新电视剧免费观看| 亚洲国产日韩在线一区模特| 高清成人在线观看| 欧美人体做爰大胆视频| 中文字幕av资源一区| 日本不卡视频在线| 91小宝寻花一区二区三区| 精品国产sm最大网站| 亚洲一区二区三区视频在线 | 国产东北露脸精品视频| 欧美日韩电影一区| 中文字幕在线一区免费| 美女www一区二区| 在线亚洲高清视频| 国产精品午夜在线观看| 麻豆91精品91久久久的内涵| 欧美伊人久久久久久久久影院| 中文字幕精品一区| 免费看日韩a级影片| 欧美性一区二区| 欧美激情一区二区在线| 裸体歌舞表演一区二区| 欧美三片在线视频观看| 亚洲天堂久久久久久久| 国产精品一区二区不卡| 日韩一区二区电影网| 亚洲一区二区三区四区在线观看 | 欧美激情在线看| 久久99蜜桃精品|